Chapter 2
Application Layer

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers). They’re in PowerPoint form so you can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) in substantially unaltered form, that you mention their source (after all, we’d like people to use our book!)
- If you post any slides in substantially unaltered form on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

Computer Networking:
Jim Kurose, Keith Ross
Addison-Wesley, April 2009.

All material copyright 1996-2010
J.F Kurose and K.W. Ross, All Rights Reserved
Chapter 2: Application layer

- 2.1 Principles of network applications
- 2.2 Web and HTTP
- 2.3 FTP
- 2.4 Electronic Mail
 - SMTP, POP3, IMAP
- 2.5 DNS

- Bonus:
 - a detour on CDN

- 2.6 P2P applications
- 2.7 Socket programming with TCP
- 2.8 Socket programming with UDP
Web caches (proxy server)

Goal: satisfy client request without involving origin server

- user sets browser: Web accesses via cache
- browser sends all HTTP requests to cache
 - object in cache: cache returns object
 - else cache requests object from origin server, then returns object to client
Content distribution networks (CDNs)

Content replication
- challenging to stream large files (e.g., video) from single origin server in real time
- **solution**: replicate content at hundreds of servers throughout Internet
 - content downloaded to CDN servers ahead of time
 - placing content “close” to user avoids impairments (loss, delay) of sending content over long paths
 - CDN server typically in edge/access network
Content distribution networks (CDNs)

Content replication

- CDN (e.g., Akamai) customer is the content provider (e.g., CNN)
- CDN replicates customers’ content in CDN servers.
- when provider updates content, CDN updates servers
CDN example

1. HTTP request for www.foo.com/sports/sports.html
2. DNS query for www.cdn.com

client

origin server

CDN’s authoritative DNS server

CDN server near client

origin server (www.foo.com)
- distributes HTML
- replaces:
 - http://www.foo.com/sports/ruth.gif

CDN company (cdn.com)
- distributes gif files
- uses its authoritative DNS server to route redirect requests

Multimedia Networking
More about CDNs

routing requests

- CDN creates a “map”, indicating distances from leaf ISPs and CDN nodes
- when query arrives at authoritative DNS server:
 - server determines ISP from which query originates
 - uses “map” to determine best CDN server
- CDN nodes create application-layer overlay network
Chapter 2: Application layer

2.1 Principles of network applications
2.2 Web and HTTP
2.3 FTP
2.4 Electronic mail
 • SMTP, POP3, IMAP
2.5 DNS
2.6 P2P applications
2.7 Socket programming with TCP
2.8 Socket programming with UDP
FTP: the file transfer protocol

- transfer file to/from remote host
- client/server model
 - client: side that initiates transfer (either to/from remote)
 - server: remote host
- ftp: RFC 959
- ftp server: port 21
FTP: separate control, data connections

- FTP client contacts FTP server at port 21, TCP is transport protocol
- client authorized over control connection
- client browses remote directory by sending commands over control connection.
- when server receives file transfer command, server opens 2nd TCP connection (for file) to client
- after transferring one file, server closes data connection.
- server opens another TCP data connection to transfer another file.
- control connection: "out of band"
- FTP server maintains "state": current directory, earlier authentication
FTP commands, responses

sample commands:
- sent as ASCII text over control channel
- `USER` *username*
- `PASS` *password*
- `LIST` return list of file in current directory
- `RETR` filename retrieves (gets) file
- `STOR` filename stores (puts) file onto remote host

sample return codes
- status code and phrase (as in HTTP)
- 331 Username OK, password required
- 125 data connection already open; transfer starting
- 425 Can’t open data connection
- 452 Error writing file
Chapter 2: Application layer

2.1 Principles of network applications
2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail
 - SMTP, POP3, IMAP
2.5 DNS
2.6 P2P applications
2.7 Socket programming with TCP
2.8 Socket programming with UDP
Electronic Mail

Three major components:
- user agents
- mail servers
- simple mail transfer protocol: SMTP

User Agent
- a.k.a. “mail reader”
- composing, editing, reading mail messages
- e.g., Outlook, elm, Mozilla Thunderbird, iPhone mail client
- outgoing, incoming messages stored on server
Electronic Mail: mail servers

Mail Servers
- mailbox contains incoming messages for user
- message queue of outgoing (to be sent) mail messages
- SMTP protocol between mail servers to send email messages
 - client: sending mail server
 - “server”: receiving mail server

![Diagram of mail servers and SMTP interactions](image)
Electronic Mail: SMTP [RFC 2821]

- uses TCP to reliably transfer email message from client to server, port 25
- direct transfer: sending server to receiving server
- three phases of transfer
 - handshaking (greeting)
 - transfer of messages
 - closure
- command/response interaction
 - commands: ASCII text
 - response: status code and phrase
- messages must be in 7-bit ASCII
Scenario: Alice sends message to Bob

1) Alice uses UA to compose message and “to” bob@someschool.edu
2) Alice’s UA sends message to her mail server; message placed in message queue
3) Client side of SMTP opens TCP connection with Bob’s mail server
4) SMTP client sends Alice’s message over the TCP connection
5) Bob’s mail server places the message in Bob’s mailbox
6) Bob invokes his user agent to read message
Sample SMTP interaction

S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection
Try SMTP interaction for yourself:

- telnet servername 25
- see 220 reply from server
- enter HELO, MAIL FROM, RCPT TO, DATA, QUIT commands

above lets you send email without using email client (reader)
SMTP: final words

- SMTP uses persistent connections
- SMTP requires message (header & body) to be in 7-bit ASCII
- SMTP server uses CRLF.CRLF to determine end of message

comparison with HTTP:
- HTTP: pull
- SMTP: push
- both have ASCII command/response interaction, status codes
- HTTP: each object encapsulated in its own response msg
- SMTP: multiple objects sent in multipart msg
Mail message format

SMTP: protocol for exchanging email msgs
RFC 822: standard for text message format:
 - header lines, e.g.,
 - To:
 - From:
 - Subject:
 different from SMTP commands!
 - body
 - the “message”, ASCII characters only
Mail access protocols

SMTP: delivery/storage to receiver’s server

mail access protocol: retrieval from server

- POP: Post Office Protocol [RFC 1939]
 - authorization (agent <--> server) and download
- IMAP: Internet Mail Access Protocol [RFC 1730]
 - more features (more complex)
 - manipulation of stored msgs on server
- HTTP: gmail, Hotmail, Yahoo! Mail, etc.
POP3 protocol

Authorization phase
- **Client commands:**
 - `user`: declare username
 - `pass`: password
- **Server responses**
 - `+OK`
 - `-ERR`

Transaction phase, client:
- `list`: list message numbers
- `retr`: retrieve message by number
- `dele`: delete
- `quit`

```
S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on
C: list
S: 1 498
S: 2 912
S: .
C: retr 1
S: <message 1 contents>
S: .
C: dele 1
C: retr 2
S: <message 1 contents>
S: .
C: dele 2
C: quit
S: +OK POP3 server signing off
```
POP3 (more) and IMAP

more about POP3
- previous example uses "download and delete" mode.
- Bob cannot re-read e-mail if he changes client
- "download-and-keep": copies of messages on different clients
- POP3 is stateless across sessions

IMAP
- keeps all messages in one place: at server
- allows user to organize messages in folders
- keeps user state across sessions:
 - names of folders and mappings between message IDs and folder name