Chapter 4
Network Layer

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers). They’re in PowerPoint form so you can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) in substantially unaltered form, that you mention their source (after all, we’d like people to use our book!)
- If you post any slides in substantially unaltered form on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2010
J.F Kurose and K.W. Ross, All Rights Reserved
Chapter 4: Network Layer

Chapter goals:

- understand principles behind network layer services:
 - network layer service models
 - forwarding versus routing
 - how a router works
 - routing (path selection)
 - broadcast, multicast
- instantiation, implementation in the Internet
Chapter 4: Network Layer

4.1 Introduction

4.2 Virtual circuit and datagram networks

4.3 What’s inside a router

4.4 IP: Internet Protocol
 • Datagram format
 • IPv4 addressing
 • ICMP
 • IPv6

4.5 Routing algorithms
 • Link state
 • Distance Vector
 • Hierarchical routing

4.6 Routing in the Internet
 • RIP
 • OSPF
 • BGP

4.7 Broadcast and multicast routing
Network layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in every host, router
- router examines header fields in all IP datagrams passing through it
Two Key Network-Layer Functions

- **forwarding**: move packets from router’s input to appropriate router output

- **routing**: determine route taken by packets from source to dest.
 - **routing algorithms**

analogy:

- **routing**: process of planning trip from source to dest
- **forwarding**: process of getting through single interchange
Interplay between routing and forwarding

![Diagram showing the interplay between routing and forwarding.]

Routing Algorithm

<table>
<thead>
<tr>
<th>Header Value</th>
<th>Output Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>3</td>
</tr>
<tr>
<td>0101</td>
<td>2</td>
</tr>
<tr>
<td>0111</td>
<td>2</td>
</tr>
<tr>
<td>1001</td>
<td>1</td>
</tr>
</tbody>
</table>

Value in arriving packet’s header
Connection setup

- 3rd important function in *some* network architectures:
 - ATM, frame relay, X.25
- before datagrams flow, two end hosts and intervening routers establish virtual connection
 - routers get involved
- network vs transport layer connection service:
 - network: between two hosts (may also involve intervening routers in case of VCs)
 - transport: between two processes
Network service model

Q: What service model for “channel” transporting datagrams from sender to receiver?

example services for individual datagrams:
- guaranteed delivery
- guaranteed delivery with less than 40 msec delay

example services for a flow of datagrams:
- in-order datagram delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in inter-packet spacing
Network layer service models:

<table>
<thead>
<tr>
<th>Network Architecture</th>
<th>Service Model</th>
<th>Bandwidth</th>
<th>Loss</th>
<th>Order</th>
<th>Timing</th>
<th>Congestion feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet</td>
<td>best effort</td>
<td>none</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no (inferred via loss)</td>
</tr>
<tr>
<td>ATM</td>
<td>CBR</td>
<td>constant rate</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no congestion</td>
</tr>
<tr>
<td>ATM</td>
<td>VBR</td>
<td>guaranteed rate</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no congestion</td>
</tr>
<tr>
<td>ATM</td>
<td>ABR</td>
<td>guaranteed minimum</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>ATM</td>
<td>UBR</td>
<td>none</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Chapter 4: Network Layer

4.1 Introduction

4.2 Virtual circuit and datagram networks

4.3 What’s inside a router

4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing

4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP

4.7 Broadcast and multicast routing
Network layer connection and connection-less service

- datagram network provides network-layer connectionless service
- VC network provides network-layer connection service
- analogous to the transport-layer services, but:
 - service: host-to-host
 - no choice: network provides one or the other
 - implementation: in network core
Virtual circuits

“source-to-dest path behaves much like telephone circuit”
- performance-wise
- network actions along source-to-dest path

- call setup, teardown for each call *before* data can flow
- each packet carries VC identifier (not destination host address)
- *every* router on source-dest path maintains “state” for each passing connection
- link, router resources (bandwidth, buffers) may be *allocated* to VC (dedicated resources = predictable service)
VC implementation

a VC consists of:

1. path from source to destination
2. VC numbers, one number for each link along path
3. entries in forwarding tables in routers along path

- packet belonging to VC carries VC number (rather than dest address)
- VC number can be changed on each link.
 - New VC number comes from forwarding table
VC Forwarding table

Forwarding table in northwest router:

<table>
<thead>
<tr>
<th>Incoming interface</th>
<th>Incoming VC #</th>
<th>Outgoing interface</th>
<th>Outgoing VC #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>63</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>97</td>
<td>3</td>
<td>87</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Routers maintain connection state information!
Virtual circuits: signaling protocols

- used to setup, maintain, teardown VC
- used in ATM, frame-relay, X.25
- not used in today’s Internet

1. Initiate call
2. incoming call
3. Accept call
4. Call connected
5. Data flow begins
6. Receive data
Datagram networks

- no call setup at network layer
- routers: no state about end-to-end connections
 - no network-level concept of “connection”
- packets forwarded using destination host address
 - packets between same source-dest pair may take different paths
Datagram Forwarding table

Routing algorithm

<table>
<thead>
<tr>
<th>local forwarding table</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>dest address</td>
<td>output link</td>
<td></td>
</tr>
<tr>
<td>address-range 1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>address-range 2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>address-range 3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>address-range 4</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

4 billion IP addresses, so rather than list individual destination address list range of addresses (aggregate table entries)

IP destination address in arriving packet’s header
Datagram Forwarding table

<table>
<thead>
<tr>
<th>Destination Address Range</th>
<th>Link Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>11001000 00010111 00010000 00000000 through 11001000 00010111 00010111 11111111</td>
<td>0</td>
</tr>
<tr>
<td>11001000 00010111 00011000 00000000 through 11001000 00010111 00011000 11111111</td>
<td>1</td>
</tr>
<tr>
<td>11001000 00010111 00011001 00000000 through 11001000 00010111 00011111 11111111</td>
<td>2</td>
</tr>
<tr>
<td>otherwise</td>
<td>3</td>
</tr>
</tbody>
</table>

Q: but what happens if ranges don’t divide up so nicely?
Longest prefix matching

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

<table>
<thead>
<tr>
<th>Destination Address Range</th>
<th>Link interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>11001000 00010111 00010*** **********</td>
<td>0</td>
</tr>
<tr>
<td>11001000 00010111 00011000 **********</td>
<td>1</td>
</tr>
<tr>
<td>11001000 00010111 00011*** **********</td>
<td>2</td>
</tr>
<tr>
<td>otherwise</td>
<td>3</td>
</tr>
</tbody>
</table>

Examples:

DA: 11001000 00010111 00010110 10100001 Which interface?

DA: 11001000 00010111 00011000 10101010 Which interface?
Datagram or VC network: why?

Internet (datagram)
- data exchange among computers
 - “elastic” service, no strict timing req.
- “smart” end systems (computers)
 - can adapt, perform control, error recovery
 - simple inside network, complexity at “edge”
- many link types
 - different characteristics
 - uniform service difficult

ATM (VC)
- evolved from telephony
- human conversation:
 - strict timing, reliability requirements
 - need for guaranteed service
- “dumb” end systems
 - telephones
 - complexity inside network
Chapter 4: Network Layer

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What's inside a router?
4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
4.7 Broadcast and multicast routing
Router Architecture Overview

two key router functions:
- run routing algorithms/protocol (RIP, OSPF, BGP)
- *forwarding* datagrams from incoming to outgoing link
Input Port Functions

Decentralized switching:
- given datagram dest., lookup output port using forwarding table in input port memory
- goal: complete input port processing at ‘line speed’
- queuing: if datagrams arrive faster than forwarding rate into switch fabric

Physical layer: bit-level reception
Data link layer: e.g., Ethernet

see chapter 5
Switching fabrics

- Transfer packet from input buffer to appropriate output buffer

- Switching rate: rate at which packets can be transfer from inputs to outputs
 - Often measured as multiple of input/output line rate
 - N inputs: switching rate N times line rate desirable

- Three types of switching fabrics

 ![Diagram of three types of switching fabrics: memory, bus, crossbar]
Switching Via Memory

First generation routers:

- traditional computers with switching under direct control of CPU
- packet copied to system’s memory
- speed limited by memory bandwidth (2 bus crossings per datagram)
Switching Via a Bus

- datagram from input port memory to output port memory via a shared bus
- **bus contention**: switching speed limited by bus bandwidth
- 32 Gbps bus, Cisco 5600: sufficient speed for access and enterprise routers
Switching Via An Interconnection Network

- overcome bus bandwidth limitations
- Banyan networks, crossbar, other interconnection nets initially developed to connect processors in multiprocessor
- advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.
- Cisco 12000: switches 60 Gbps through the interconnection network
Output Ports

- **buffering** required when datagrams arrive from fabric faster than the transmission rate
- **scheduling discipline** chooses among queued datagrams for transmission
Output port queueing

- buffering when arrival rate via switch exceeds output line speed
- queueing (delay) and loss due to output port buffer overflow!
How much buffering?

- RFC 3439 rule of thumb: average buffering equal to “typical” RTT (say 250 msec) times link capacity C
 - e.g., $C = 10$ Gpbs link: 2.5 Gbit buffer
- recent recommendation: with N flows, buffering equal to $\frac{\text{RTT} \cdot C}{\sqrt{N}}$
Input Port Queuing

- Fabric slower than input ports combined -> queueing may occur at input queues
 - Queueing delay and loss due to input buffer overflow!
- Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward

Output port contention: only one red datagram can be transferred. Lower red packet is blocked

One packet time later: green packet experiences HOL blocking